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A NEW CLASS OF ASYMPTOTICALLY UNIFORM MOTIONS OF A HEAVY SOLID BODY 
WITH A FIXED POINT* 

1u.P. VARKHALEV and G.V. GORR 

A class of asymptotically uniform motions of a heavy solid body /l/ is indicated, 

which has the property that for any distribution of the body mass it is always 

possible to select its initial position and initial angular velocity so that with 

infinitely increasing time the body motions approach asymptotically an unsteady un- 

iform rotation. The set of such motions generally depends on one arbitraryconstant. 

1. The problem of motion of a heavy solid body with a fixed point reduces to the inte- 

gration of a system of differential equations which determine in the system of coordinates ac- 

companying the body the angular velocity vector o and the vector v of directionofthe gravity 

force 
no'= Ao X 0 + r(e >: Y), V'==YXO (1.1) 

where A is the tensor of body inertia at its fixed point, r is the maximum value of the force 

of gravity moment, and e is a unit vector directed from the fixed point to the center of mass. 

Equations (1.1) have the following first integrals: 

v.v=I, Ao.v=k, Ao.o-X(e.v)=ZE (1.2) 

The structure of solution presented here was obtained without restrictions on the distri- 

bution of mass in the body and is defined by the limit state of the body, i.e. it uniform ro- 

tation. Let 0' be the vector of angular velocity of uniform rotation. Then 0' = o"vo , coo2 
(Ad’ X v”) + r (e x v”) = 0. From this, using conventional methods we derive the equation of 

the Staude cone and the uniform rotation angular velocity 

Av”.(e x v')=O, 
@ = r [(“le.vO) - (e.v”) (‘-lv”.v~)] 

(.4VO.V") - (AV")' 
(1.3) 

The constants 

We substitute 

of integrals are calculated by formulas 

vO.vO= 1, k=d(AvO.vO), 2E= w~~(Av~.v~)- 2r(e.v3 

for t the new variable 

r =: c&' (1.4) 

where we set h< O,c>O. Denoting differentiation with respect to r by a prime, we rewrite 

Eqs.cl.1) as 

h~Aw'=Ao x W+ r (e x v), hTd = v X w (1.5) 

where vectors o and v are defined by fomlulas 

0 = 0Yvo +- n, v =vo + v (1.6) 

The substitution of (1.6) into (1.5) yields 

h?AQ' = mO(AvO x B + AQ x v”) t r (e x v) + AQ x R, hzy’ = vo x R + 00 (y x v”) + y x 9 (1.7) 

Let us show that system (1.7) admists a solution of the form of analytic functions of r 

/2/ 

Q= 2 6&r*, y= 5 v,? (1.8) 
rn=l n---l 

The substitution of (1.8) into (1.7) yields 
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The coefficients of series (1.8) are successively obtained from equations 

lik.&& +o@(v~ x /&J-OOfAVO x a&)-r@ x 4) =(Z -&,) @;A% x a&) 
il.l.0) 

hkvk + o.P(v” x Vk) - (9 x Wk) = (1 - &i(2) (5; vo x -9) 
which follow from the requirement that relations (1.9) must be identities with respect to r. 
By virtue of equality su = 1 vector COmpOrEntS W~.VI satisfy only the system of homogeneous 

equations in (l.lO), hence the constant ?, is defined as the zero of that system determinant 

A, = X2 (u& + a,&' + az) = 0 
(1.11) 

where Ai are the principal moments of inertia of the body, ei are components of vector e in 
the principal coordinate axes of that tensor. Hence parameter 2, in (1.4) is the root Of the 
characteristic equation ofthe linear part of system (1.7). Since by virtue of the problem 
formulation h<O, Eq.(l.ll) must have at least one negative root. Since it also admits a 
positive root, the considered here uniform rotation (1.3) is Liapunov unstable. 

Parameters Ai,ei,r, m”,vo must satisfy one of the following conditions: 1) a2 = 0, a, < 0, 
2) a,<O, 3) a,>O, a,<O. at2 -ba,a,.> 0 /3/. In the first two cases there is amongtheroots 

of Eq.(l.ll) one negative root, and in the third there are two negative roots. Note that the 
quantities WI, V1 are generally determined with an accuracy within one arbitrary constant. 

Let us consider system (1.10) when k> i (&I = 0). The determinant composed of coeffic- 
ients at vector components ok? vk is of the form A% = h2kZ (ao&‘k4 + a,h’k’ i %f. On the assumption 
that k > 1 it vanishes only when k2 = a2/(aoh4). In case 1) and 2) we evidently have A,#O. 
When the conditions of case 3) are satisfied, then when A = h, we have l?= az/aoh,4, and when 
h = h,, k" = aohi4/az, where h,, & denote the negative roots of Eq,(l.ll.), hence there must 

exist a h< 0 such that Ak#O when k > i. Consequently, system (1.10) is always solvable 
for ok, vk which are uniquely defined in terms of o,,...,~~..., and Vt,...,~k-~, without the ap- 
pearance of new arbitrary constants. The coefficients of series (1.8), thus, generallydepend 
on one arbitrary constant. 

Convergence of (1.8) is implies by Kamenkov's theorem /2/ on the basis of the property 
Ak#O proved above in the case of k> 1. We denote by a* the convergence radius of series 
(1.8) and select the quantity c in (1.4) so that c(l;*. Then by virtue of (1.4), (1_6),and 
(1.8) motions of the body with unbounded increase of time asymptotically approach uniform 
rotation. Hence the following theorem is valid. 

Theorem, The Euler- Poisson equations have in the case of arbitrary mass distribution 
in a heavy solid body a solution in the form of analytic functions of the variable z = ceh' 

(1.12) 

This solution defines the class of motions asymptotically approaching the unstable uniform 
rotation. 

Note that up to the present asymptotic uniform motions were disclosed only in a small 
number of solutions (see the overview in /4/). Each of them was obtainedforafixeddistribu- 
tion of the body mass, and the asymptotically uniform motion of the body were defined for 
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particular selection of input data. The solution derived in the present investigation holds 
for any arbitrary mass distribution, thus, not only unifying particular solutions forasymptot- 
ically uniform motions of the body in one class but, also, disclosing new cases of motions of 
a heavy solid body. 

2. Let us consider the particular case of o"= 0. From (1.1) and (1.2) we obtain v" ~= 

-e, k: 0, E : r, and reduce (1.10) to the form 

Coefficients of the characteristic equation (1.11) are: 

a, = A,A,A,, a, = -lA,A, (e,’ + eZz) + AzA, (ez’ -t es”) $ AlA (el’ + e,‘)I r 

az = (A I612 $ AZez’ -I- A 3e3z) P 

Calculation of the discriminant of Eq.(l.ll) yields 

D = Ie14A12 (A, - A# + ez4Az2 (A, - A,)’ i- es4A3’ (AI - 

A# - 2e,2e22A1Az (AZ - A& (A, - A,) - 2ez2e3’AtA3 (A 3 - 

A,) (A, - A,) - 2e,Ze,2A1A3 (A, - A,) (AZ - A.41 ra 

If among the principal moments of inertia there are equal ones, we have the evident 

inequality D >O. If there are no equal moments of inertia, we can set A,<Az<A, andagain 

obtain D = {[e,A, (AZ - As) - e2Az (A, - A,) - e,A, (A, - A,)P + 
4e22e,2 (AZ - A,) (A, - A,)}P > 0 

i.e. Eq.(l.ll) has four real roots for any distribution of the body mass. 

When 0' = 0 we obtain from (1.8) formulas (1.12) in which 0" = 0 and the coefficients 

satisfy system (2.1). Analysis of the latter shows that terms of these series are generally 

determined with an accuracy to a single arbitrary constant, while for Lagrange and Hess gyro- 

scopes there are two such constants. The results obtained in this Section enable us to form- 

ulate the following corollary of the theorem. 

Corollary. In the case of arbitrary distribution of mass in a heavy solid body it is 

always possible to select its initial position and velocity so that, as t --too motion of the 

body will asymptotically approach the unsteady state of rest. 

The authors thank P.V. Kharlamov for his interest in this work. 
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